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ABSTRACT
Emergency medicine demands prompt, decisive actions, often contingent on diagnostic tests. However, the reliance on 
diagnostic tests, despite their ostensible precision, can sometimes lead to suboptimal outcomes. This paper delves into 
three clinical scenarios that highlight the importance of a judicious, Bayesian approach in medical practice. The first scenario 
focuses on a patient with chest pain and a low pre-test probability of pulmonary embolism but a positive imaging result. 
The second scenario addresses the misleading absence of ST-segment elevation on the electrocardiogram, providing 
a false negative result of myocardial infarction. The third clinical scenario involves a patient with wide QRS tachycardia. 
The scenarios underscore that while diagnostic tests are instrumental, they should not eclipse clinical judgment. The 
overreliance on diagnostics can lead to misdiagnoses, therapeutic failure and/or inadequate treatment of the patient. In the 
era of evidence-based medicine, the amalgamation of clinical experience, current evidence, and patient values is paramount. 
This discourse advocates blending clinician intuition with probabilistic reasoning, thereby optimizing decision-making and 
enhancing patient welfare. Emergency practitioners are urged to harness both their experiential acumen and the Bayesian 
approach to achieve the best patient outcomes.

Keywords: Emergency medicine; Clinical reasoning; Sensitivity and specificity; Hospital emergency service

RESUMO
A medicina de emergência exige ações rápidas e decisivas, muitas vezes baseadas em testes diagnósticos. No entanto, a 
dependência dos testes diagnósticos, apesar de sua aparente precisão, pode, às vezes, levar a resultados subótimos. Este 
artigo explora três cenários clínicos que destacam a importância de uma abordagem bayesiana criteriosa na prática médica. 
O primeiro cenário envolve um paciente com dor no peito e uma baixa probabilidade pré-teste de embolia pulmonar, mas 
com resultado de imagem positivo. O segundo aborda a ausência errônea de supradesnivelamento do segmento ST ao 
eletrocardiograma, gerando um resultado falso-negativo de infarto do miocárdio. O terceiro cenário clínico envolve um 
paciente com taquicardia de QRS largo. Os cenários enfatizam que, embora os testes diagnósticos sejam fundamentais, 
eles não devem ofuscar o julgamento clínico. Confiar excessivamente nos resultados diagnósticos pode levar a diagnóstico 
incorreto, falha terapêutica ou tratamento inadequado do paciente. Na era da medicina baseada em evidências, a combinação 
de experiência clínica, evidências atuais e valores do paciente é fundamental. Este discurso defende a combinação da 
intuição do clínico com o raciocínio probabilístico, otimizando a tomada de decisão e melhorando o bem-estar do paciente. 
Praticantes de emergência são instados a utilizar tanto sua perspicácia experiente quanto a abordagem bayesiana para 
alcançar os melhores resultados para os pacientes.

Descritores: Medicina de emergência; Raciocínio clínico; Sensibilidade e especificidade; Serviço hospitalar de emergência 
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 INTRODUCTION
In the fast-paced realm of  emergency medicine, 
diagnostic precision is paramount. Clinicians fre-
quently encounter scenarios where they must as-
sess the probabilities associated with diagnostic 
tests, a skill crucial to making informed decisions 
under pressure. Sensitivity and specificity have 
traditionally been hailed as the gold standards 
for evaluating diagnostic tests. However, in the 
day-to-day clinical setting, especially within an 
emergency room’s confines, these metrics may not 
provide a holistic view. These metrics often arise 
from studies where patient outcomes are predefi-
ned, contrasting starkly with real-world situations 
where the medical trajectory is yet to unfold. Such 
a discrepancy highlights the potential pitfalls of  
relying solely on these measures and underscores 
the necessity for more sophisticated diagnostic 
tools.

Bayesian reasoning offers a promising 
solution. In the context of  emergency medicine, 
it provides a methodological framework that 
integrates initial probabilities sourced from either 
broad epidemiological data or individual patient 
presentations into the diagnostic process. Such 
an approach not only offers a more granular 
understanding of  a patient’s condition but also 
fosters enhanced patient-centric decisions. This 
narrative review delved into articles on Pubmed®, 
spanning all publication dates, to gather insights on 
Bayesian reasoning’s role in emergency medicine.1 
Particularly, for the accuracy of  the tests under 
discussion, the authors handpicked either the 
original articles or those whose methodologies 
closely mirrored the forthcoming clinical cases, 
ensuring a comprehensive examination of  the topic.

As we navigate through this review, readers 
will be introduced to clinical scenarios, starting 
with a case of  pulmonary embolism (PE) analyzed 
using an angiotomography. Subsequent cases 
will highlight the nuanced interpretation of  
electrocardiograms (ECGs), shedding light on the 
multifaceted applications of  Bayesian reasoning in 
emergency diagnostics.2

CLINICAL SCENARIO 1: TRADITIONAL 
APPROACH
A patient presents to the Emergency Department 
complaining of  chest pain. Clinical evaluation re-
veals that the pain is distinctly muscular in natu-
re, worsening upon gentle palpation at a specific 
thoracic site and not modulated by respiratory 
movements. Notably, the patient’s medical history 
is devoid of  any prior event of  venous thrombo-
sis, surgical intervention, or episodes of  prolonged 
immobilization, and a thorough physical exami-
nation unremarkable. However, influenced by 
a preceding encounter where an asymptomatic 
patient was found to have a pulmonary arterial 
thrombus on tomography, the current attending 
physician, perhaps exhibiting anchoring effect, 
elects to perform a computed tomography pulmo-
nary angiography (CTPA) for all subsequent pa-
tients presenting with chest pain. The imaging re-
sults for the current patient indicate the presence 
of  a thrombus in one of  the pulmonary arteries.

Given the reported sensitivity of  the imaging 
modality at 94% (95% of  confidence interval 
[95%CI] 0.89-0.97) and specificity at 98% 
(95%CI 0.97-0.99),3 the physician quickly reaches 
a diagnosis of  PE in this patient. Yet, the reliance 
solely on these statistical values without considering 
the clinical context warrants scrutiny. 

Sensitivity measures the true positive rate, 
indicating the probability of  the test detecting the 
disease in affected individuals, while specificity 
calculates the true negative rate, showcasing the 
test’s ability to correctly identify healthy individuals. 
These are their formulas:

Sensitivity  =
	 True positives

	 People with disease

Specificity =
	 True negatives

	 Healthy individuals

Translating these definitions to the present 
scenario raises pertinent questions: does the 94% 
sensitivity confirm that the patient has PE, or is the 
98% specificity a better indicator of  the disease’s 
presence? When relying on the sensitivity, how 
does one ascertain the presence of  disease before 
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the test, given that the examination was intended 
to clarify this very uncertainty? Conversely, if  one 
is persuaded by “SpIn and SnOut” mnemonic and 
uses the 98% specificity, the foundational question 
remains: how can we conclusively state the patient’s 
initial health status?

WHY SENSITIVITY AND SPECIFICITY FAIL
At the core of  the issue lies the inherent retrospec-
tive nature of  sensitivity and specificity. Defined 
by their ability to accurately identify individuals 
either with or without a disease, these metrics are 
invariably rooted in post-hoc data. They arise 
from situations where participants’ health statuses 
are pre-established, thus serving as a backward-
-looking measure. In contrast, the clinical realm 
operates primarily in a ‘pre-hoc’ domain.4,5 Here, 
medical professionals utilize diagnostic tools to 
discern the presence or absence of  a disease when 
the outcome remains uncertain.

Consider the physician who is informed that a 
test boasts a sensitivity and specificity both pegged 
at 90%. Based on a positive result from this test, 
the immediate instinct might be to surmise a 90% 
likelihood of  the patient suffering from the disease. 
However, this is a glaring fallacy. The disconnect 
stems from the foundational basis of  sensitivity 
and specificity: they require prior knowledge of  the 
health status of  individuals. Conversely, in most 
clinical contexts, the very purpose of  the test is to 
elucidate this unknown status. Neither the 90% 
sensitivity nor the 90% specificity, then, directly 
provides an accurate estimate of  the disease’s 
probability in the patient.

The complexities of  clinical scenarios extend 
beyond the parameters defined by sensitivity and 
specificity. Integral to informed decision-making 
are numerous factors, including a patient’s history, 
symptomatology, and findings from other diagnostic 
tests. Yet, sensitivity and specificity operate in 
isolation, devoid of  this multi-dimensional clinical 
context.

This lacuna is further exacerbated by clinicians’ 
tendencies to favor intuitive reasoning, especially 

in routine problem-solving. This approach, while 
effective in some instances, can veer towards 
diagnostic errors due to its inherent lack of  
structure and analytical rigor.6 Another cognitive 
pitfall lies in the oversight of  the diagnostic process’s 
probabilistic nature, leading to the phenomenon 
of  base-rate neglect.7 By disproportionately 
emphasizing sensitivity and specificity, the clinician 
may inadvertently overlook the initial disease 
likelihood or its actual prevalence in a population 
segment. Such lapses impair the application of  
Bayesian reasoning and can culminate in skewed 
clinical judgments.

UNDERSTANDING BAYESIAN REASONING
Bayesian statistics stands as the logical under-
pinning for addressing the uncertainty inherent 
in decision-making structures. At its core, the es-
sence of  Bayesian reasoning is rather straightfor-
ward. In any decision-making scenario, there are 
quantities or outcomes that have been observed 
and documented, and there are those have not 
been, leading to inherent uncertainties. To make 
rational and informed decisions, it is imperative 
to quantify these uncertainties. This quantifica-
tion is achieved through Bayesian statistics, which 
provides probability assessments by considering 
all relevant evidence derived from observed and 
recorded quantities and outcomes.8

The coherence of  these probability statements 
is ensured by Bayes’ theorem, a foundational 
mathematical result. This theorem ensures that 
probability assessments, grounded in observed data, 
logically align, facilitating robust decision-making.

Transitioning to Bayesian reasoning signifies a 
shift from conventional thinking to a more dynamic, 
probabilistic approach. In the context of  clinical 
decision making, besides making correct decisions, 
in daily clinical practice it is also important to make 
correct decisions quickly and this is supported by 
Bayesian reasoning.9 Rather than relying on black-
and-white outcomes, Bayesian thought offers a 
spectrum of  possibilities. It provides a gradient 
perspective, enabling an understanding of  how 
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new information or diagnostic test results modify 
the pre-existing probability of  a specific outcome.

This gradient view does more than just 
add depth to diagnostic thinking; it challenges 
medical professionals to tackle the often-neglected 
ambiguities that lurk within healthcare. By forcing 
them to address these ambiguities head-on, 
Bayesian reasoning prepares clinicians to make 
decisions that are not only informed but are also 
rooted in a deep understanding of  the intricate 
interplay of  probabilities.

Applying Bayesian reasoning in clinical practice 
demands an assortment of  methodologies. One 
pivotal tool within the Bayesian framework is the 
concept of  likelihood ratios. While these ratios 
find their roots in sensitivity and specificity, they 
provide a more vibrant interpretation of  diagnostic 
outcomes. They shed light on how diagnostic tests 
recalibrate our estimation of  a patient’s likelihood 
of  having a specific condition. The strength of  
likelihood ratios is their capability to embed 
clinical assessments within the backdrop of  prior 
probabilities or pre-test likelihoods, ensuring a 
clinician maintains a rounded view that integrates 
both inherent risks and new data from diagnostic 
results. From a mathematical viewpoint, the 
positive likelihood ratio (LR+) and the negative 
likelihood ratio (LR-) can be expressed as: 

probability undergoes a modification, culminating 
in a “post-test probability”. Figure 1 elucidates 
this transformational process of  “revising the 
probability of  disease”. Likelihood ratios play an 
instrumental role in indicating the extent of  this 
shift in suspicion based on a specific test result. 
Given that tests can yield positive or negative 
results, each diagnostic test inherently carries 
two likelihood ratios. The LR+ guides us on the 
magnitude to amplify the disease probability upon 
obtaining a positive test, while the LR- provides 
insights into its necessary reduction if  the result is 
negative.10

A practical interpretation of  likelihood ratios is 
anchored in the following benchmarks: An LR >1 
signifies an augmented probability that the target 
disorder exists. Conversely, an LR <1 suggests a 
diminished likelihood of  the disorder’s presence. If  
the LR equals 1.0, the test result does not alter the 
disease’s probability in any way.

This understanding ushers in some illuminating 
revelations. A test with an LR+ near or equal to 
1.0 does not contribute to the clinical reasoning 
for the patient, regardless of  its sensitivity or 
specificity. For instance, in a hypothetical scenario 
a test boasting a specificity of  96% might seem 
impressive to an uninitiated mind, but a Bayesian 
thinker would probe into its sensitivity. If  the 
sensitivity stands at a meager 4%, both the positive 
and LRs- hover around 1.0. This implies that a 
test, which on the surface appeared as a fantastic 
confirmatory tool, is, in mathematical terms, 
useless. Furthermore, considering that confidence 
intervals, by mathematical definition, vary to 
values lower and higher than those described in 
research, this variability could imply that a positive 
test might even argue against the presence of  
disease (in cases where the LR+ is less than 1.0, for 
example), or that a negative test could suggest the 
disease’s presence.

In essence, clinicians ought to reflect upon a 
fundamental query: By what factor do I amplify 
the chances of  the individual having or not having 
the disease?

LR + =
	 Sensitivity 

 	 (1 – specificity)

LR -  =
	 (1- sensitivity)

 	 Specificity 

Delving deeper into the essence of  these ratios, 
they serve as pivotal indicators that empower 
medical practitioners in making informed 
decisions. When a physician contemplates ordering 
a diagnostic test, the aim is to identify which test, 
or combination of  tests, can effectively confirm 
or refute the presence of  a disease in a patient. 
Speaking the language of  clinical epidemiology, 
physicians begin with an initial assessment of  the 
disease likelihood, termed “pre-test probability”. 
Following the execution of  the test, this initial 
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To practically utilize the concept of  likelihood 
ratios in clinical reasoning, one might initially believe 
that merely multiplying the pre-test probability 
with the likelihood ratio would suffice. However, 
such an assumption is an oversimplification. In 
reality, it is not straightforward because likelihood 
ratios are odds ratios and not direct probability 
metrics.

To accurately determine the post-test probability, 
the pre-test probability must first be transformed 
into odds. Once in this format, the pre-test odds 
are then multiplied by the appropriate likelihood 
ratio, be it LR+ for a positive test or LR- for a 
negative one. This multiplication results in the 
post-test odds. But our journey does not end here. 
The final step involves converting these post-test 
odds back into a probability.

This calculation can be broken down into the 
following sequence:

1. Convert pre-test probability to odds:

A person

Pre-test probability

The individual had a positive test.
What’s the likelihood of really have the disease?

The individual had a negative test.
What’s the likelihood of still having the disease?

Diseased

Sensitivity

True 
positives

False 
negatives

False 
positives

True 
negatives

True positives
proportion = true

positives/All 
positives

False negatives
proportion = false

negatives/All
negatives

Healthy

Specificity

Source: the authors.

Figure 1. This diagram illustrates the diagnostic process for determining the presence or absence of a disease in an individual, starting with a pre-test 
probability. It progresses through the potential outcomes of a diagnostic test, segmented into “diseased” and “healthy” categories. Each category further 
divides to reflect the test’s results: true positives and false negatives under “diseased”, and true negatives and false positives under ‘healthy’. The diagram 
emphasizes the importance of sensitivity and specificity in interpreting these results. The subsequent sections present the proportion-based approach to 
understanding the likelihood of having or not having the disease based on the test outcome. The true positive proportion denotes the chances of genuinely 
having the disease given a positive result, while the false-negative proportion showcases the likelihood of having the disease even after a negative test result. 

Odds (pre-test)  =
	 Probability

 	 1 – probability

Probability (post-test)  =
	 Odds (post-test)

	 1 + Odds (post-test)

Odds (post-test) = Odds (pre-test) × LR

2. Multiply by LR:

3. Convert post-test odds to probability:

There are websites like http://getthediagnosis.
org/calculator.htm that make this process a lot 
easier, by simply asking the user to input sensitivity 
and specificity or LR+ and LR- and pre-test 
probability.

Furthermore, the realm of  Bayesian reasoning 
introduces the use of  natural frequencies or what 
we call “Bayesian tree” (Figure 1). This approach 
calls for the drafting of  a decision tree, initiated by 



JBMEDE. 2024;4(2):e24020

Pinto et al. Bayesian reasoning in the Emergency Department

gauging the probability of  a disease in a particular 
patient or group. This structure is designed to 
elucidate how medical testing interacts with pre-
existing probabilities to refine our understanding 
of  a patient’s health status.11

At the outset, there is the pre-test probability, 
which is a clinician’s initial estimation or the 
epidemiological likelihood of  an individual 
having a disease before any tests are done. This 
estimation is based on various factors like patient 
history, clinical symptoms, and epidemiological 
data.

This tree then bifurcates into two primary 
branches: “diseased” and “healthy”. Each branch 
then further divides based on the results of  the 
diagnostic test in question. Under “Diseased”, 
there are results that are true positives (correctly 
identified as having the disease) and false 
negatives (incorrectly identified as not having the 
disease despite being diseased). The “Healthy” 
side delineates into true negatives (correctly 
identified as not having the disease) and false 
positives (incorrectly identified as having the 
disease).

To refine our understanding further: If  a test 
result is positive, the probability of  genuinely 
having the disease is given by the proportion of  
True Positives among all positive results. If  a test 
result is negative, the likelihood of  still having 
the disease is defined by the proportion of  False 
Negatives among all negative results.

Building on this, Fagan’s nomogram arises as a 
potent visual mechanism.12 This tool marries pre-
test probabilities with likelihood ratios, paving the 
way to derive post-test probabilities (Figure 2). It is 
akin to having a visual companion accompanying 
a clinician through the Bayesian decision-making 
journey.

To bring the practical implications of  Bayesian 
reasoning, the article will explore three hypothetical, 
yet common scenarios faced in emergency settings. 
The initial case will be re-examined, but this 
time under the Bayesian scope, followed by two 
subsequent cases. 

Source: the authors.

Figure 2. Fagan’s nomogram, a graphical representation designed to 
seamlessly integrate pre-test probabilities with likelihood ratios, 
subsequently producing post-test probabilities. This depiction facilitates the 
intuitive understanding and application of Bayesian principles in clinical 
scenarios. 
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CLINICAL SCENARIO 1: UNBIASED 
(BAYESIAN APPROACH)
Reviewing the clinical case of  chest pain in an 
emergency setting, the imaging results of  CTPA 
indicate the presence of  a thrombus in one of  the 
pulmonary arteries.

Before starting the analysis, it is important 
to highlight that diagnostic strategies for PE are 
based on evaluation of  the pretest probability 
for each patient, which provides an estimate of  
the clinical probability of  PE in a similar patient 
population. In this case, the pretest probability was 
determined by the Wells Score which results in a 
clinical classification with high, intermediate and 
low probability for PE.

Now that we are unbiased, we can opt for any 
of  the three strategies delineated in the previous 
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section: likelihood ratio, natural frequencies, or 
Fagan’s nomogram. It is essential to understand 
that these approaches are different representations 
of  the same Bayesian method, merely visualized 
in distinct ways, not separate methodologies. 
Regardless of  the choice, the outcome 
remains consistent. For this case, let’s select the 
straightforward calculation method.

Considering our diagnostic test, it boasts a 
sensitivity of  94% and a specificity of  98%. With 
these values in mind, we will proceed to calculate 
the LR+ and LR-.

	 Sensitivity  

	 (1-specificity) 

0.94

(1 – 0.98)

0.94

0.02
LR + = = = 47

	 (1-sensitivity)

	 Specificity  

(1 – 0.94)

0.98

0.06

0.98
LR – = = 0.06

1. Odds (pre-test) = 

2. Odds (post-test) = 0.01 × 47 = 0.47

= 0.01=
0.01

(1-0.01)

0.01

0,99

3. Probability (post-test) = = 0.31 or 31% =
0.47

(1 + 0.47)

0,47

1.47

is substantially lower than what the impressive 
sensitivity and specificity figures of  94% and 98% 
might initially suggest. Nonetheless, this shouldn’t 
be brushed aside.

The physician is now confronted with a patient 
who has a 31% chance of  having pulmonary 
embolism, a potentially life-threatening ailment. 
This realization necessitates swift clinical judgment 
regarding further diagnostic tests or even the 
initiation of  empirical treatment.

Moreover, it is worth mentioning that if  upon 
closer observation, our patient exhibits any 
clinical signs consistent with PE, even those that 
might be considered “low-risk”, their classification 
could change. Starting with a low Wells score, for 
instance, their pre-test probability would rise to 
1.3% to 2%.13,14

CLINICAL SCENARIO 2: CHEST PAIN 
WITHOUT ST SEGMENT ELEVATION
A patient steps’ into the Emergency Department, 
describing a sensation of  sternal pressure. A swift 
ECG reveals no signs of  ST-segment elevation. It 
is tempting for a physician to view this absence as a 
clear indication, steering away from the likelihood 
of  an acute coronary syndrome (ACS), more spe-
cifically non-ST elevation ACS (NSTE-ACS). Yet, 
this perspective overlooks the inherent probabilis-
tic essence of  medical practice. Diagnostic tools 
do not offer unequivocal answers; they shift the 
scales of  likelihood.

Emerging findings in the medical literature 
are shedding light on the precision of  ST-
segment elevation as a diagnostic marker for 
acute coronary occlusion. A pivotal study 
highlighted that the presence of  ST-segment 
elevation carries a sensitivity of  41%, a specificity 
of  94% and accuracy of  77% when pinpointing 
occlusion myocardial infarction.15 To a physician 
not considering the probability of  false-negative 
outcomes, the absence of  ST-segment elevation 
might give the impression of  a definitive absence 
of  coronary occlusion. Such a perspective is a 
reductionist take on the situation.

The derived likelihood ratios are notably 
good. Specifically, when such findings are present, 
the odds of  someone having a pulmonary 
thromboembolism multiply approximately 47 
times. This is a significant increase and, on its own, 
might be quite convincing.

However, taking a step back and considering the 
broader clinical picture is paramount. Our patient 
does not manifest a classic clinical picture for PE. 
Bearing this in mind, the clinician has deemed it 
prudent to assign a pre-test probability for PE of  
merely 1 in 100 or 1%. This pre-test probability, 
though low, serves as our foundation. With this 1% 
probability in hand and given that the test result 
was positive, we will now transition to calculating 
the post-test probability.

This becomes:

The computed post-test probability that this 
individual has a PE stands at 31%, whereas there’s 
a 69% chance they do not have the condition. It 
is imperative to underscore that a 31% likelihood 
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To navigate this with more depth, we can lean 
into the Bayesian framework. By infusing the initial 
pre-test probability – which we estimated at 80% 
for an acute coronary occlusion, given the patient’s 
presentation and risk profile – we can delve deeper. 
For this exercise, let us adopt the method of  natural 
frequencies (though I must emphasize, choosing 
another methodology would lead us to the same 
conclusion). Crafting a Bayesian tree with these 
inputs nudges us toward a post-test probability of  
71.5% that an infarction is underway, even without 
visible ST-segment elevation (Figure 3). 

Besides clinical presentation and ECG criteria, 
biomarkers play a complementary role in the 
diagnosis, risk stratification, and management 
of  patients with suspected ACS. One of  these 
biomarkers is the cardiac troponin, whether the 
high-sensitivity or conventional, which rises rapidly 
in patients with myocardial infarction and remain 
elevated for a variable period of  time.16

Despite significant advances in the sensitivity 
of  cardiac troponin tests, more than one in four 
patients with ST segment elevation myocardial 
infarction have troponin concentrations below 
the European Society of  Cardiology (ESC) 
recommended threshold at presentation. This 

limitation of  troponin dosage occurs because 
during myocardial infarction, abrupt coronary 
occlusion can prevent the release of  troponin into 
the circulation until reperfusion is performed.17,18 
Moreover, troponin does not show the etiology 
nor distinguish myocardial injury from acute 
myocardial infarction (AMI). While troponin levels 
do not alter the revascularization approach in cases 
of  coronary occlusion, its role becomes crucial in 
instances of  false-negative ECGs. In such cases, 
troponin testing may be the next step and can 
also present false-negative results in very early 
acute coronary occlusions still within the optimal 
timeframe for reperfusion (door-to-needle and 
door-to-balloon). 

CLINICAL SCENARIO 3: WIDE QRS 
TACHYCARDIA WITH NEGATIVE 
ELECTROCARDIOGRAM CRITERIA
Imagine a patient with history of  ischemic cardiac 
conditions arriving at the Emergency Department 
with a wide QRS complex tachycardia. Even with 
recognized guidelines recommending prompt 
intervention,19 the attending physician chooses 
to distinguish between ventricular tachycardia 
(VT) and supraventricular tachycardia (SVT) by 

Pre-test
Probability: 80%

80% diseased 20% healthy

Specificity: 94%

False negatives
proportion = false

negatives/All
negatives

False negatives
proportion =

47.2/(18.8+47.2)

False negative
proportion = 

71.5%

Sensitivity: 41%

True positives
32.8%

False negatives
47.2%

False positives
1.2%

True negatives
18.8%

Source: the authors.

Figure 3. Bayesian analysis of the probability assessment for acute myocardial infarction in the presence of a non-elevated ST-segment. The diagram starts 
with a pre-test probability of 80% based on the patient’s clinical presentation. It then splits into “Diseased” and “Healthy” branches, further dissecting the 
outcomes using the sensitivity and specificity values. The end result showcases the proportions of true positives, false negatives, false positives, and true 
negatives. The side calculation details the derivation of the false negative proportion, emphasizing its significance in the context of the presented clinical scenario. 
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employing the Vereckei parameters.20 The ECG 
does not show an initial r wave in aVR, the dura-
tion of  the initial q wave does not exceed 40ms, 
and the Vi/Vt ratio in aVR indicates SVT rather 
than VT, leading to treatment based on the latter 
diagnosis.

Yet, this assessment overlooks the probabilistic 
nature inherent in medical practice. Each 
electrocardiographic indicator has its respective 
LR- for VT: 0.68 without an initial r wave in aVR, 
0.73 when the initial q wave does not exceed 40 
ms, and 0.60 when the Vi/Vt ratio in aVR signals 
against VT. In unison, the aggregated LR- for the 
Vereckei parameters stands at 0.29. To deduce this, 
we will directly employ the Fagan’s nomogram 
(Figure 4), using 90% as pre-test probability 
based on patient’s history.21 This leads to the 
inference that there is a 72% likelihood of  the 
patient experiencing VT, even when all indicators 
are negative22. This underscores the potential risk 
of  a patient receiving suboptimal care if  the most 
plausible diagnosis is prematurely ruled out.

That is the reason why the ability to differentiate 
between VT and SVT using ECG criteria may 
not be as clinically impactful as traditionally 
believed. Relying solely on these criteria can lead 
to misdiagnoses and may not significantly alter 
immediate clinical management. It is essential 
to follow emergency arrhythmia guidelines 
and to consult with an electrophysiologist for a 
comprehensive evaluation post-stabilization.

EMBRACING UNCERTAINTY: LIMITATIONS 
OF BAYESIAN REASONING
Embracing uncertainty in medicine is a challen-
ging endeavor. The Bayesian approach may ini-
tially appear overly idealistic in practice. Despite 
physicians’ awareness of  uncertainty, there is a re-
luctance within medical culture to openly recogni-
ze and deal with it. Our educational systems, cli-
nical case discussions, and research paradigms are 
built on the conviction that we must distill a wide 
array of  symptoms, signs, and test results into a 
conclusive diagnosis. We are often compelled to 

Source: the authors.

Figure 4. Fagan’s nomogram relating pre-test probabilities to post-test 
probabilities via different likelihood ratios. The diagonal red line represents the 
direct correlation between the pre-test and post-test probabilities. This 
visualization aids clinicians in updating disease probabilities following 
diagnostic tests. The nomogram is a valuable tool in evidence-based medicine, 
assisting in clinical decision-making by integrating quantitative data.

Pre-test
probability

Pre-test
probability

Likelihooh
ratio

0.001

0.001

0.001

0.002

0.002

0.002

0.003

0.003

1000
500

200
100
50

20
10
5

2
1

0.005

0.005

0.005

0.007

0.007

0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.03

0.05

0.05

0.05

0.07

0.07

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0.4
0.5 0.5

0.50.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

0.97

0.97

0.98

0.98

0.99

0.99

0.993

0.993

0.995

0.995

0.997

0.997

0.998

0.998

0.999

0.999

0.93

0.93

0.95

0.95

formulate a definitive differential diagnosis with 
limited information and encourage our trainees 
to commit to a decision, disregarding the pro-
found impact cognitive biases might have under 
these circumstances. Regularly, the goal shifts to-
wards converting the patient’s complex story into 
a simplistic, definitive diagnosis that fits neatly into 
established categories. This tendency risks dimi-
nishing the intricate and evolutionary nature of  
clinical reasoning and, at the same time, stands in 
contrast to the very ideals of  personalized, patien-
t-centric care.23

In the realm of  contemporary medicine, 
the tendency is to sidestep or outright ignore 
uncertainty, both knowingly and unknowingly. 
This avoidance is somewhat understandable; 
uncertainty introduces a feeling of  vulnerability, 
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an apprehension about the unknown that’s deeply 
unsettling. It propels us towards seeking certainty, 
to find solace in the black-and-white, away from 
the uncomfortable, ambiguous grays. Our medical 
protocols and guidelines often prioritize clear-cut, 
binary outcomes, further perpetuating this desire 
for certainty. Physicians might also harbor concerns 
that voicing uncertainty could be perceived as 
a lack of  knowledge by patients and colleagues, 
prompting them to conceal their doubts. This 
attitude is largely influenced by a tradition of  
rationalism that promises a false sense of  security 
and definitive understanding.24

However, the inherent uncertainties of  life and 
medicine inherently limit the Bayesian method. 
Physicians will not always have pre-test probabilities 
readily available from previous studies, and even 
when they do, those probabilities might have been 
skewed due to patient selection bias or may not 
perfectly match the patient’s specific situation, 
leaving only extrapolation as an option. Similarly, 
the application of  tests is not immune to biases 
such as patient selection, incorporation bias, or 
spectrum bias, which can all skew the outcomes of  
research determining the likelihood ratios used in 
calculations. The uncertainty in Bayesian reasoning 
reflects the uncertainty in medicine itself.

For medical professionals, it is vital to see 
uncertainty not as an obstacle but as an essential 
aspect of  clinical practice. Recognizing and 
accepting this uncertainty is key to delivering care 
that is tailored to each patient’s specific needs and 
circumstances. By being mindful of  the inherent 
unpredictabilities in medicine, clinicians can make 
more considered and individualized decisions. This 
approach enhances the quality of  care provided 
and builds a foundation of  trust and openness 
between the patient and healthcare provider. 

CONCLUSION
In the intricate and demanding environment of  
emergency medicine, clinicians are often called 
upon to make swift and critical decisions, many 
of  which are grounded in diagnostic testing. The 

clinical scenarios presented in this article un-
derscore the profound significance of  adopting 
a judicious, Bayesian approach, integrating both 
clinical acumen and diagnostic data. The era of  
evidence-based medicine in which we find oursel-
ves champions the amalgamation of  clinical expe-
rience with current evidence and patient values. 
However, the propensity to over-rely on diagnostic 
tests, often perceived as the infallible arbiters of  
disease, can be a slippery slope.

Our clinical scenarios elucidate the fallibility 
that can emerge when diagnostic tests are perceived 
through an overly deterministic lens. Relying 
blindly on diagnostics, be it due to their impressive 
sensitivity and specificity or established guidelines, 
can lead to both false positives and false negatives. 
Such misdiagnoses have palpable ramifications, 
jeopardizing patient outcomes.

Emergency practitioners are adept at navigating 
the labyrinth of  differential diagnoses, often relying 
on intuition sharpened by years of  experience. 
However, the key takeaway from this discourse is 
the indispensable nature of  blending that intuition 
with a probabilistic reasoning approach. Such an 
approach guards against the potential pitfalls of  
over-trusting or underestimating diagnostic tools. 
As healthcare professionals, our primary mandate is 
the welfare and safety of  our patients. By embracing 
a rational, Bayesian mindset and understanding the 
inherent limitations and strengths of  our diagnostic 
arsenal, we can hone our decision-making process 
and further that mandate.
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