Comorbidade cardiovascular como preditor de complicações em pacientes hospitalizados com Covid-19
Conteúdo do artigo principal
Resumo
Objetivo: Avaliar a associação entre as características clínicas e a gravidade da Covid-19. Métodos: Foram incluídos adultos hospitalizados com Covid-19 confirmada por reação em cadeia da polimerase com transcrição reversa (RT-PCR), entre março e junho de 2020. Avaliamos o estado de saúde dos pacientes durante a internação hospitalar. Coletamos dados demográficos, clínicos e laboratoriais e realizamos análise de regressão linear multivariada para determinar variáveis preditoras dos desfechos (tempo de internação, necessidade de terapia intensiva e uso de ventilação mecânica). Para este estudo, definimos comorbidade cardiovascular como a presença de doença arterial coronariana, fibrilação atrial ou valvopatias. Resultados: A amostra total do estudo consistiu de 221 pacientes, com média de idade de 53,7 ± 16,0 anos, sendo 57% (n = 126) do sexo masculino. Após ajuste por idade e saturação de oxigênio, indivíduos com doença cardiovascular apresentaram maior tempo de internação hospitalar (23,5 versus 13,5 dias; p < 0,008; β = 0,175; IC95% 2,33–17,14), maior tempo em unidade de terapia intensiva (18,8 versus 7,7 dias; p < 0,002; β = 0,195; IC95% 3,47–16,67) e maior duração de ventilação mecânica (9,7 versus 4,0 dias; p < 0,02; β = 0,148; IC95% 0,64–10,58) em comparação com indivíduos sem doença cardiovascular. A presença de doença cardiovascular e a saturação de oxigênio estiveram associadas, de forma independente, a desfechos adversos na análise de regressão multivariada. Conclusão: Pacientes com comorbidades cardiovasculares apresentam maior risco de desenvolver formas graves da Covid-19. Esses achados podem ser úteis na previsão de complicações e na orientação de cuidados personalizados para indivíduos com síndromes respiratórias graves.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Referências
References
1. Organização Pan-Americana da Saúde. Histórico da pandemia de COVID-19. OPAS, 2022. Disponível em: https://www.paho.org/pt/covid19/historico-da-pandemia-covid-19.
2. World Health Organization. WHO Coronavírus (COVID-19) Dashboard. WHO, 2022. Disponível em: https://covid19.who.int/.
3. Chen CH, Sheng WL, Ching FS, et al. Biomarkers during COVID-19: Mechanisms of Change and Implications for Patient Outcomes. Diagnostics, v. 12, 509, 2022. DOI http://doi.org/10.3390/diagnóstico12020509.
4. Raman B, Bluemke DA, Luscher TF, et al. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. V. 43, 2022. DOI http://doi.org/10.1093/eurheartj/ehac031.
5. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus Disease 2019 Case Surveillance – United States, January 22-May 30, 2020. MMWR Morb Mortal Wkly Rep, 69(24), p. 759 – 765, 2020. DOI http://doi.org/ 10.15585/mmwr.mm6924e2.
6. Menni C, Valdés AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of disease and delta variant dominance: a prospective observational study from the ZOE COVID Study. Lancet. 399(10335), p. 1618 – 1624, 2022. DOI http://doi.org/10.1016/S0140-6736(22)00327-0.
7. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature, 584(7821), p. 430 – 436, 2020. DOI http://doi.org/10.1038/s41586-020-2521-4.
8. Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavírus Disease 2019 in New York City: prospective cohort study. BMJ, 369, 2020. DOI http://doi.org/10.1136/bmj.m1966.
9. Wang S, Zhu R, Zhang C, et al. Effects of the pre-existing coronary heart disease on the prognosis of COVID-19 patients: A systematic review and meta-analysis. PLOS ONE, 2023. DOI https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292021.
10. Morsali S, Gavgani ER, Oladghaffari M, et al. Effects of underlying hear failure on outcomes of COVID-19; a systematic review and meta-analysis. Rom J Intern Med., 16;61(1), 2023. DOI http://doi.org/10.2478/rjim-2022-0021.
11. Rathore SS, Atulkar A, Rernala K, et al. A systematic review and meta-analysis of new-onset atrial fibrillation in the context of COVID-19 infection. Journal of Cardiovascular Electrophysiology, 2024. DOI http://doi.org/10.111/jce.16169.
12. Hajikhani B, Safavi M, Bostanshirin N, et al. COVID-19 and coronary artery disease; A systematic review and meta-analysis. New Microbes and New Infections, 53:101151. DOI http://doi.org/10.1016/j.nmni.2023.101151.
13. Szarpak L, Mierzejewska M, Jurek J, et al. Effect of Coronary Artery Disease on COVID-19 – Prognosis and Risk Assessment: A Systematic Review and Meta-Analysis. Biology, 11;221, 2022. DOI http://doi.org/10.3390/biology11020221.
14. Yek C, Warner S, Wiltz JL, et al. Risk Factors for Severe COVID-19 Outcomes Among Persons Aged ≥ 18 Years Who Completed a Primary COVID-19 Vaccination Series – 465 Health Care Facilities, United States, December 2020 – October 2021. MMWR Morb Mortal Wkly Rep, 71(1), 2022. DOI http://doi.org/10.15585/mmwr.mm7101a4.
15. Richard AJ, Barton CG. Cardiovascular services in COVID-19 – Impact of the pandemic and lessons learned. Progress in Cardiovascular Diseases. 76, 2023. DOI http://doi.org/10.1016/j.pcad.2023.01.005.
16. Vosko I, Zirlike A, Bugger H. Impact of COVID-19 on Cardiovascular Disease. Viruses. 15(2):508, 2023. DOI http://doi.org/10.3390%2Fv15020508.
17. Cordova E, Mykietiuk A, Sueed O, et al. Clinical characteristics and outcomes of hospitalized patients with SARS-CoV-2 infection in a Latin American country: Results from the ECCOVID multicenter prospective study. PLoS ONE, 16:10, 2021. DOI http://doi.org/10.1371/journal.pone.0258260.
18. Libby P, Loscalzo J, Ridker PM, et al. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol, 2018. DOI http://doi.org/10.1016/j.jacc2018.08.1043.
19. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) – United States, February 12-March 16,2020. MMWR Morb Mortal Wkly Rep. 69(12), p. 343 – 346, 2020. DOI http://doi.org/10.15585/mmwr.mm6912e2.
20. Haitao T, Vermunt JV, Abeykoon J, et al. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin Proc, 95(10), 2020. DOI http://doi.org/10.1016/jmayocp.2020.07.024.
21. Zhou F, Ting Y, Ronghui D, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a restrospective cohort study. Lancet, v. 395, p. 1054-1062, 2020. DOI http://doi.org/10.1016/S0140-6736(20)30566-3.
22. Docherty AB, Harrison EM, Green CA, et al. Features of 20,133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ, 369, m1985, 2020. DOI http://doi.org/10.1136/bmj.m1985.